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Defining the functional relationships between proteins is critical
for understanding virtually all aspects of cell biology. Large-scale
identification of protein complexes has provided one important
step towards this goal; however, even knowledge of the stoichi-
ometry, affinity and lifetime of every protein–protein interaction
would not reveal the functional relationships between and within
such complexes. Genetic interactions can provide functional
information that is largely invisible to protein–protein interaction
data sets. Here we present an epistatic miniarray profile (E-MAP)1

consisting of quantitative pairwise measurements of the genetic
interactions between 743 Saccharomyces cerevisiae genes involved
in various aspects of chromosome biology (including DNA rep-
lication/repair, chromatid segregation and transcriptional regu-
lation). This E-MAP reveals that physical interactions fall into two
well-represented classes distinguished by whether or not the indi-
vidual proteins act coherently to carry out a common function.
Thus, genetic interaction data make it possible to dissect function-
ally multi-protein complexes, including Mediator, and to organize
distinct protein complexes into pathways. In one pathway defined
here, we show that Rtt109 is the founding member of a novel class
of histone acetyltransferases responsible for Asf1-dependent acet-
ylation of histone H3 on lysine 56. This modification, in turn,
enables a ubiquitin ligase complex containing the cullin Rtt101
to ensure genomic integrity during DNA replication.

The synthetic genetic array (SGA)2 and diploid-based synthetic
lethality analysis on microarray (dSLAM)3 approaches have enabled
systematic identification of synthetic sickness/lethal (SSL) relation-
ships in S. cerevisiae in which pairs of gene deletions are far more
deleterious together than either of the individual deletions. Although
individual SSL interactions can be difficult to interpret, the patterns
of genetic interactions for gene mutations can be more informative
because they provide high-resolution phenotypes that can be com-
pared to identify functionally related genes1–5. Recently, we exploited
the SGA strategy for generating double mutants to develop an
approach, termed E-MAP1, that greatly facilitates such comparisons.
An E-MAP comprises comprehensive and quantitative measure-
ments of genetic interactions between pairs of mutations within a
defined subset of genes linked to one or more specific biological

processes1. E-MAPs are created by systematically generating yeast
strains carrying each pair of mutations and measuring their growth
rates. Genetic interactions are determined by comparing the
observed fitness of the double mutants to an empirically determined
typical fitness that would be expected on the basis of the growth
defects associated with each mutation1,6. This technique allows for
the identification of not only negative (aggravating) interactions,
such as SSL pairs, but also positive (alleviating) interactions.
Positive interactions include suppression, in which double mutants
are healthier than the sicker of the two single mutants, as well as cases
in which loss of one gene masks the effect of losing another, as is seen
when two proteins act together in a common complex or pathway.

We comprehensively evaluated pairwise genetic interactions for
754 alleles of 743 genes involved in various aspects of chromosome
biology (Fig. 1a; see also Supplementary Fig. 1 and Supplementary
Data). The mutations include deletions of 663 non-essential genes and
constitutive hypomorphic alleles—constructed using the ‘decreased
abundance by messenger RNA perturbation’ (DAmP) strategy1—for
70 essential genes. Genes were selected based on published functional
studies, protein–protein interaction data7,8, earlier genome-wide SSL
studies2 and chemical sensitivity screens.

The resulting E-MAP consists of a 754 by 754 matrix of genetic
interaction scores, where each row corresponds to the pattern (or
profile) of interactions for one mutant allele of a gene (Fig. 1a). Using
hierarchical clustering, we reordered the matrix to sort genes accord-
ing to the similarity of their genetic interaction profiles. The resulting
map has a modular structure that distinguishes between major pro-
cesses such as transcription and chromatin remodelling, DNA rep-
lication and repair, and sister chromatid segregation. We illustrate
the high-resolution functional information within these modules by
focusing on a subcluster containing genes involved in DNA replica-
tion and repair (Fig. 1b). The general DNA replication factors (for
example, RPA (RFA1 and RFA2) and RFC processivity clamp loader
subunits (RFC4 and RFC5)) cluster near each other, and are resolved
from the DNA replication checkpoint complex, Mrc1–Csm3–Tof1.
The E-MAP also distinguishes groups of genes involved in sensing
and repairing DNA damage including the RAD52 epistasis group
(RAD51, RAD52, RAD54, RAD55, RAD57), the MRX complex
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(RAD50, MRE11, XRS2) and the 9-1-1 clamp (DDC1, MEC3,
RAD17). The complete genetic interaction map, a useful resource
for future functional studies, is available in Supplementary Data.

Beyond allowing simple hierarchical clustering, patterns of genetic
interactions provide an unbiased way to identify sets of genes that
function together in a coherent manner1–3,5. If two proteins act to-
gether to carry out a common function, one would expect deletions
of the two encoding genes to have highly similar profiles of genetic
interactions, as deletion of either gene would disrupt the same cel-
lular process. Similarly, one would expect a positive genetic inter-
action between the two deletions, because in the context of the first,
the second deletion would incur no additional cost. This relationship
can be formalized in a COP (complex or pathway) score (see Sup-
plementary Methods)1,6, which synthesizes both expectations to cre-
ate a single mathematical metric. Sets of genes connected by high
COP scores are analogous to classically defined epistasis groups such
as the well-studied RAD52 epistasis group (Fig. 1b and Supplemen-
tary Fig. 2).

Recently, we used large-scale affinity purification data7,8 to gen-
erate a physical interaction map that quantitatively reports through a
purification enrichment (PE) score on the relative likelihood of each
protein–protein interaction (see http://interactome-cmp.ucsf.edu)9.

The accuracy and completeness of this integrated physical interaction
map and the present E-MAP now make it possible to explore broadly
the relationship between physical complexes and genetically defined
epistasis groups. To evaluate the predictive power of the COP score
relative to the physically based PE score, we used the protein com-
plexes in the Saccharomyces Genome Database (SGD)10 to define a
trusted reference set of ‘true positives’ and ‘true negatives’ (see
Supplementary Methods). We then used receiver operating char-
acteristic (ROC) curves11, which measure the rate at which each
approach identifies true positives versus true negatives, to compare
the predictive power of the two approaches.

Notably, the COP score identifies a distinct and large subset of
protein–protein interactions with a specificity rivalling that of affin-
ity purification (Fig. 2a; see also Supplementary Fig. 2). A key value of
the E-MAP, therefore, is that it divides physical interactions into two
classes: one group in which the proteins function coherently and a
second in which their patterns of genetic interactions indicate that
the proteins carry out distinct or even opposing functions. In par-
ticular, for pairs of physically interacting proteins, the histogram of
either the genetic interaction scores or the correlation between gen-
etic interaction patterns shows a roughly bimodal character (Fig. 2b,
c). Thus, for a large fraction (somewhat greater than half) of physical
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Figure 2 | Relationship between genetic epistasis groups and physical
complexes. a, ROC curves comparing the power of the genetic interaction
patterns—using the COP score (red) (see Supplementary Methods)—and
large-scale affinity purification data (blue)—using a recent re-analysis of raw
purification data9—to predict co-membership of pairs of proteins in the
same physical complex. The slope of the initial portion of each curve serves

as a measure of the score’s maximal accuracy. b, Distribution of direct
genetic interaction scores for pairs of genes encoding physically interacting
proteins (green) and non-interacting proteins (black) (see Supplementary
Data). c, Distribution of the Pearson’s correlation coefficients between the
interaction patterns for the same sets of gene pairs as in b.
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deletions of spurious ORFs that overlap the indicated gene. Genes
highlighted in red represent novel findings that are referred to in the text.
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interactions, individual deletions of the two genes cause largely un-
related phenotypes (see Supplementary Data for a complete compar-
ison between genetic and physical complexes).

This ability of genetic interaction maps to reveal whether phys-
ically interacting proteins mediate a common function allows for
the systematic dissection of multi-protein complexes into functional
modules. We illustrate this by analysing Mediator, a conserved 25-
protein complex critical for regulation of transcriptional initiation12

by RNA polymerase II. Previous studies have suggested that Mediator
is composed of four discrete physical modules: the head, middle, tail
and CDK modules (Fig. 3b)13,14. Genetic interaction patterns accur-
ately distinguish the protein components of these modules (Fig. 3a)
and reveal distinct patterns of genetic interactions between compo-
nents of different modules (Fig. 3a). For example, the CDK module
displays positive genetic interactions with the head, middle and tail
modules (Fig. 3a, b), consistent with the model in which the CDK
module opposes the action of the remainder of the complex14.

Our E-MAP data also reveal close functional relationships between
Mediator components and non-Mediator proteins (Fig. 3a), thereby
providing insights into specialized roles of the Mediator modules. For
example, the transcriptional elongation factor TFIIS (Dst1) has a pat-
tern of interactions highly correlated with patterns of middle module
components, suggesting that this module may function with Dst1

during or after promoter escape. Conversely, the activator Swi4 clus-
ters with the tail components, consistent with previous evidence that
transcriptional activator proteins sometimes recruit Mediator through
physical interactions with the tail module13. Finally, mutations of head
module components behave most like mutations in the core transcrip-
tional machinery (RNA polymerase II (RPB3, IWR1), TFIIF (TFG1,
TFG2) and TFIIH (RAD3)), indicating that this module may have a
critical role in the assembly and/or activity of the pre-initiation com-
plex, which is consistent with a recent biochemical analysis15.

In addition to dividing large protein complexes into functional
sub-modules, the E-MAP-derived epistasis groups reveal many cases
where proteins cooperate with each other even when they do not
physically interact. One prominent and previously uncharacterized
example of such an epistasis group is found within the DNA damage
cluster (Fig. 1b) and comprises five genes: RTT101, MMS1, MMS22,
RTT109 and ASF1 (Fig. 4a). Rtt101 is one of four cullins in budding
yeast and is functionally3 and physically associated with Mms1,
Mms22, the E2 ubiquitin conjugating enzyme Cdc34, and the
RING finger protein Hrt1 (refs 8–10, 16). This complex thus has
features characteristic of ubiquitin ligases that target proteins for
proteasomal degradation. RTT109 is a poorly characterized open
reading frame (ORF) identified as a regulator of Ty1 transposition10.
Finally, Asf1 is a well-studied histone chaperone implicated in several
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processes including chromatin assembly17, suppression of spurious
transcriptional initiation18 and the acetylation of histone H3 on
lysine 56 (K56)19.

Examination of interaction patterns suggests that the underlying
functional connection between the members of this epistasis group is
mediated through the cell-cycle-dependent acetylation of H3 K56
(refs 20–22). For example, deletion of HST3, which encodes the
enzyme primarily responsible for H3 K56 deacetylation21,22, shows
positive genetic interactions with these genes (Fig. 4a). Consistent
with this, deletion of ASF1 (ref. 22), RTT101, RTT109, MMS1 or
MMS22 suppresses the growth defect caused by hyperacetylation in
hst3D hst4D strains (Fig. 4b). As seen for the asf1D strain, deletion of
RTT109 eliminates detectable K56 acetylation in vivo (Fig. 4c)23.
Deletion or temperature-dependent inactivation of each known yeast
histone acetyltransferase (HAT) protein has little effect on global
levels of K56 acetylation in vivo24, suggesting that Rtt109 itself might

be the responsible HAT. Indeed, we found that Rtt109, both affinity-
purified from yeast (Fig. 4d) and recombinantly produced from
Escherichia coli (Fig. 4e), acetylates itself as well as recombinant
histone H3. Western blot analysis using a residue-specific anti-
body confirmed that Rtt109 acts on K56 (Fig. 4d). Mutation of two
universally conserved adjacent aspartic acid residues abolished K56
acetylation both in vivo and in vitro (Fig. 4f, g). Notably, Rtt109 is
itself acetylated on K290 (data not shown), just two amino acids away
from the conserved aspartic acids, suggesting that auto-acetylation
may be a mechanism of regulation. Finally, addition of Asf1 markedly
enhances the in vitro H3 K56 acetylation activity of Rtt109 (Sup-
plementary Fig. 4), suggesting that the Asf1 requirement for the
acetylation in vivo reflects Asf1’s ability to bind to and present H3–
H4 heterodimers25,26. These observations indicate that Rtt109 is the
founding member of a new family of HATs that shares no detectable
sequence similarities with previously known HATs.
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the histone H3 K56 acetylation signalling pathway.
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Unlike Rtt109 and Asf1, loss of Rtt101, Mms22 or Mms1 sup-
presses the HST3/HST4 double deletion without preventing H3
K56 hyperacetylation (Fig. 4b, c). This suggests that the Rtt101 cullin
complex is the major downstream effector of this acetylation path-
way, thereby providing insight into this modification’s physiological
role. Specifically, defects in the progression of replication forks
through damaged DNA and natural pause sites27 seen in a rtt101D
strain (as demonstrated by prolonged activation of the checkpoint
protein Rad53 after methyl methanesulphonate treatment) are also
seen when H3 K56 acetylation is blocked by deletion of RTT109 or
ASF1 (Supplementary Fig. 3). Furthermore, RTT101, MMS22 and
MMS1 deletions confer no additional sensitivity to DNA-damaging
agents when combined with deletion of ASF1 (J. Erkmann and P.
Kaufman, personal communication). Taken together, these data sug-
gest a model (Fig. 4h) in which H3 K56 acetylation acts upstream of
the Rtt101 ubiquitin ligase complex—which is presumably targeting
one or more proteins for degradation by the proteasome—to pro-
mote replication fork progression through damaged DNA. On the
basis of positive genetic interactions in the E-MAP (Fig. 4a; see also
Supplementary Data), potential targets include components of the
replication checkpoint complex (Mrc1, Csm3, Tof1) and proteins
involved in chromatid cohesion (Dcc1, Ctf4, Ctf8, Ctf18). Given that
H3 K56 acetylation accumulates to ,50% during S phase22, K56
acetylation may generally serve to mark newly synthesized DNA
and allow the activity of Rtt101 to be specifically targeted to such
regions during DNA synthesis. More broadly, this example shows
that analysis of E-MAPs can illuminate complex biological pathways
with high precision. Success here and in earlier work using hypo-
morphic alleles1,28 for genetic interaction studies points to the poten-
tial for extending this approach to metazoans using technologies such
as RNA interference.

METHODS
Strains were constructed and E-MAP experiments were performed as described

previously29. Genetic interaction scores were computed as described in ref. 6.

Histone acetyltransferase assays were performed as described30, using immuno-

precipitates from whole-cell extracts prepared from yeast strains containing one

gene with a tandem affinity purification (TAP) tag8. More details for experi-

mental assays, as well as a description of the data analysis, are provided in

Supplementary Methods.
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