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SUMMARY

The exosome complex plays a central and es-
sential role in RNA metabolism. However,
comprehensive studies of exosome substrates
and functional analyses of its subunits are
lacking. Here, we demonstrate that as op-
posed to yeast and metazoans the plant exo-
some core possesses an unanticipated func-
tional plasticity and present a genome-wide
atlas of Arabidopsis exosome targets. Addi-
tionally, our study provides evidence for wide-
spread polyadenylation- and exosome-medi-
ated RNA quality control in plants, reveals
unexpected aspects of stable structural RNA
metabolism, and uncovers numerous novel
exosome substrates. These include a select
subset of mMRNAs, miRNA processing interme-
diates, and hundreds of noncoding RNAs, the
vast majority of which have not been previ-
ously described and belong to a layer of the
transcriptome that can only be visualized
upon inhibition of exosome activity. These first
genome-wide maps of exosome substrates
will aid in illuminating new fundamental com-
ponents and regulatory mechanisms of eu-
karyotic transcriptomes.

INTRODUCTION

The exosome is an evolutionarily conserved macromolec-
ular complex that mediates numerous reactions of 3'-5'
RNA processing and degradation and is essential for via-
bility (Estevez et al., 2003; Mitchell et al., 1997). Loss of
any individual subunit of its nine-component core is lethal
in S. cerevisiae and causes near-identical profiles of
RNA-processing defects (Allmang et al., 1999a, 1999b).
Moreover, X-ray crystallographic analysis of the human
exosome indicates that all nine core subunits are required
for its integrity (Liu et al., 2006).

The salient feature of the exosome core is the hexameric
ring defined by heterodimers of the RNase PH domain-type
proteins RRP41-RRP45, MTR3-RRP42, and RRP43-
RRP46. These heterodimers are bridged on one side by
three subunits containing S1 and KH domains: RRP40 links
RRP45 and RRP46, RRP4 interacts with RRP41 and RRP42,
and CSL4 contacts MTR3 and RRP43. Surprisingly, all six
RNase PH-type proteins in yeast and human complexes
are catalytically inactive and serve to mediate interactions
with RRP44 (Dis3), a 3-5' hydrolytic RNase responsible
for most if not all of the catalytic activity of the yeast exo-
some (Dziembowski et al., 2007; Liu etal., 2007). In contrast,
the RRP41 exosome subunit in the plant lineage retained its
catalytic competence (Chekanova et al., 2000). Further-
more, RRP44 is stably associated with the core complex
in yeast and Drosophila but not in human and T. brucei
(Chen et al., 2001; Estevez et al.,, 2001, 2003). These
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observations hint at a yet to be explored diversity of struc-
ture-function relationships in the exosome complex.

Many auxiliary factors interact with the exosome and
facilitate its functions. Most of its cytoplasmic activities,
such as homeostatic mMRNA turnover, decay of unstable
mRNAs, nonsense-mediated mMRNA decay, as well as the
degradation of the mRNA fragments derived from endonu-
cleolytic cleavage by RISC or from no-go decay, are medi-
ated by the SKI2/SKI3/SKI8 complex and the SKI7 protein
(reviewed in Houseley et al., 2006). The exosome also has
numerous targets in the nucleus. The nuclear exosome is
remarkably versatile and is able to carry out precise 3’
end processing of the 5.8S rRNA precursor (Allmang
et al., 1999a) but also completely degrades the external
transcribed rRNA spacer (Allmang et al., 2000), aberrant
pre-rBNAs, pre-mRNAs, and pre-tRNAs (Bousquet-Anto-
nelli et al., 2000; Kadaba et al., 2004, 2006; Libri et al.,
2002; Torchet et al., 2002), as well as the normal mRNAs
trapped in the nucleus (Das et al., 2003). These processing
and degradation activities require distinct auxiliary factors:
the putative RNA-binding protein LRP1 participates in the
processing of stable RNAs (Mitchell et al., 2003; Peng
et al., 2003), while the RNase D-like protein RRP6 is re-
quired for all activities of the nuclear exosome. In addition,
nuclear RNA degradation is facilitated by the TRAMP
(TRF4/5-AIR1/2-MTR4 polyadenylation) complex, which
helps recruit the exosome to the various aberrant RNAs
(LaCava et al., 2005; Vanacova et al., 2005; Wyers et al.,
2005).

Although the exosome is positioned at the nexus of
cellular RNA transactions, the extent of conservation of
structure-function relationships and the roles of its individ-
ual subunits across the phylogenetic spectrum remain
unknown. Additionally, elucidation of the mechanistic basis
of exosome essentiality is hampered by its functional versa-
tility. Furthermore, exosome substrates have yet to be com-
prehensively identified in any system, as even the most ex-
tensive datasets available only address its nuclear-specific
functions and/or are based on microarray platforms that are
not genome wide and/or not strand specific (Davis and
Ares, 2006; Houalla et al., 2006; Wyers et al., 2005). Here,
we present evidence for a unique subfunctionalization of
the individual subunits of the plant exosome core and wide-
spread oligoadenylation- and exosome-mediated RNA
quality-control pathways in plants. Further, we report the
first high-resolution genome-wide map of exosome targets.
These targets include multiple classes of stable structural
RNAs, a select subset of mMRNAs, primary microRNA (pri-
miRNA) processing intermediates, tandem repeat-associ-
ated siRNA precursor species, as well as numerous non-
coding RNAs, many of which can only be revealed through
repressing the exosome.

RESULTS AND DISCUSSION
Composition of the Arabidopsis Core Exosome

Previously, we demonstrated that Arabidopsis thaliana
RRP4 and RRP41 proteins physically interact and reside

in a high-molecular-weight complex in planta (Chekanova
et al., 2000, 2002). To elucidate its composition, we gener-
ated transgenic plants expressing either TAP-tagged
RRP4 or RRP41 at physiological levels in rrp4-1 or
rmp41-1 mutant plants, respectively. TAP-tagged RRP4
and RRP41 fully rescued the lethal phenotypes of their
corresponding null alleles. TAP-tagged complexes were
purified, and polypeptides shared between RRP4-TAP
and RRP41-TAP samples but absent from the wild-type
(WT) sample were subjected to MALDI and MS/MS analy-
ses. Nine polypeptides corresponding to known subunits
of the exosome core were identified: S1 and/or KH do-
main-containing subunits RRP4, RRP40A, and CSL4 as
well as the RNase PH-type subunits RRP41, RRP42,
RRP43, RRP45B, RRP46, and MTRS3 (Figure 1 and Table
S1 available online).

In the case of subunits encoded by duplicated genes,
only RRP40A and RRP45B were identified. This may be
due to differences in the expression patterns and/or levels
between the members of these gene pairs (Hooker et al.,
2007). RRP6, which is restricted to a nuclear form of the
exosome (Allmang et al., 1999b; Brouwer et al., 2001;
Graham et al., 2006) and is likely underrepresented in
our preparations, was also absent. On the other hand,
the absence of RRP44, which is responsible for most if
not all of the catalytic activity of the core exosome in yeast
and humans, may reflect a genuine species-specific dif-
ference in the functional architecture of the exosome since
the Arabidopsis RRP41 subunit is unique in retaining its full
catalytic activity (Chekanova et al., 2000).

Mutations in the Core Subunits of Arabidopsis
Exosome Cause Unique Phenotypes

To determine the consequences of losing specific exo-
some components on plant development, we character-
ized transfer-DNA (T-DNA) insertional alleles in several
core subunits of the Arabidopsis exosome. In yeast, the
CSL4 subunit is essential for viability (Allmang et al.,
1999b; Baker et al., 1998), and X-ray crystallographic
analysis of the human exosome predicts that all of its
core subunits are critical to maintaining structural integrity
and functionality of the complex (Liu et al., 2006). In
marked contrast, we found that neither integrity nor func-
tion of the Arabidopsis exosome was significantly
compromised by loss of CSL4. First, neither cs/4-1 nor
csl4-2 (a confirmed null allele) mutant plants manifested
any discernible phenotype (Figure S1). Second, size
fractionation demonstrated that the Arabidopsis exosome
complex lacking CSL4 remained nearly intact (Figure 1C).
Furthermore, tiling microarray analyses (below) revealed
that loss of CSL4 affects only a subset of exosome targets
(Figure S2 and Tables S2 and S3). In contrast, Arabidopsis
RRP41 was essential for development of the female
gametophyte, an eight-celled haploid structure derived
from the primary product of female meiosis. While the
rrp41-1 mutant allele was normally transmitted through
the male parent, it was not transmitted through the female
(n=194), and selfed rrp41/RRP41 heterozygotes produced
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Figure 1. Compositional Analysis of Arabidopsis Exosome

(A) TAP-tagged preparations from RRP4-TAP, RRP41-TAP, and WT lines. Exosome subunits identified by MS/MS are indicated. Major bands shared
between the WT, RRP4-TAP, and RRP41-TAP samples correspond to TEV protease and a common contaminant.

(B) Exosome subunit homologs encoded in the Arabidopsis genome; subunits identified in TAP-tagged preparations are shaded.

(C) Arabidopsis RRP41 protein (27 kDa) cosediments with a complex of >210 kDa in both Ws and cs/4-2 extracts (calculated molecular weight [MW] of

Arabidopsis exosome, based on the results of MS/MS, is 274 kDa).

seeds and aborted ovules in a 1:1 ratio (Figures 2A and S3;
three independent rrp41 alleles showed identical pheno-
types). Furthermore, the resulting progeny segregated
1:1 for WT and heterozygous plants. The mutant female
gametophytes arrested (n = 422) after the first mitosis
(two-nucleate stage, 43.1%; Figures 2B and 2C) and less
frequently at one-nucleate (1.4%), four-nucleate (3.3%),
or later stages (3.0%).

Finally, loss of RRP4 resulted in an additional unique
phenotype. Specifically, rrp4-1 mutant seeds arrested at
early stages of embryogenesis (Figures 2D and
S4A-S4E). By the time WT progeny seeds of rrp4-1/
RRP4 plants reached the heart or torpedo stages of em-
bryogenesis, 30% of the rrp4-1/rrp4-1 progeny contained
two-cell embryos, 0.5% undivided zygotes, and 3% had
embryos at the early globular stage (n = 393). Analysis of
stage-specific markers confirmed that rrp4-1 seed mor-
phology faithfully reflects their developmental timing (Fig-
ures S4F and S4G). The rrp4-1 mutant endosperm devel-
oped to varying degrees but never past the cellularization
stage (Figures S4B-S4D). These phenotypes cosegre-
gated with the T-DNA genetic lesion, which was confirmed
to be a null mutation using an SNP-based assay

(Figure 2E), and were fully rescued by the WT and
TAP-tagged RRP4 transgenes. In light of the recent find-
ings that loss of the Arabidopsis mRNA decapping
complex results in seedling lethality (Goeres et al., 2007;
Xu et al., 2006), the phenotype of rrp4-1 mutant seeds
suggests a more general function for RRP4 in postzygotic
development, which is consistent with its broad substrate
range revealed by tiling microarray analyses (below). In
summary, the distinctiveness of the phenotypes of cs/4,
rrp4, and rrp41 mutant plants and their associated molec-
ular signatures (below) indicate that the individual subunits
in the Arabidopsis exosome core make nonequivalent
contributions to its integrity and function. These findings
set the plant exosome complex apart from those analyzed
so far in other systems.

High-Definition Global Analysis

of Arabidopsis Exosome Targets

To address the functions of RRP4 and RRP41 during
vegetative growth, we engineered an estradiol-inducible
RNAi (iRNAi) system (see Experimental Procedures).
Growing these transgenic plants on estradiol-containing
medium induced the RNAi-mediated knockdown of
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Figure 2. Characterization of the Exosome Mutant Alleles

(A-C) Semisterility (A) and terminal arrest of rrp41-1 female gametophytes at the four-nuclear stage (B, nuclei are indicated by arrowheads); (C) WT
sibling of the female gametophyte shown in (B) has successfully completed development, undergone fertilization, and reached octant stage of
embryogenesis (arrowhead, octant embryo). Bar, 50 um.

(D and E) Embryo lethal phenotype of the rrp4-1 mutant. (D) RRP4/rrp4-1 heterozygotes produce normal and aborted seeds in 3:1 ratio. (E) Both Oy
and Col-0 alleles are expressed in the WT Col-0/Oy F1 hybrid, but the Col-0-specific SNP is undetectable in the rp4-1°°%/Qy F1. Distal PCR primer
was %2P-labeled (asterisk), and RT PCR products digested with Hpall. The rrp4-1 allele is depicted schematically, and Hpall fragment sizes indicated
(in bp).

(F and G) Estradiol-triggered inducible RNAi of RRP4 and RRP41 in seedlings results in growth arrest (F) accompanied by the characteristic defect in
processing of the 7S rRNA precursor into mature 5.8S rRNA (G, vertical bar).

(H and ) Venn diagram representation of the up- and down-changes in the Arabidopsis transcriptome in response to the depletion of RRP4 and
RRP41 by iRNAI.
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RRP4 (rrp4FNAY or RRP41 (rrp41FN) mRNA, resulting in
growth arrest (Figure 2F) and subsequent death of seed-
lings. Importantly, arrest was preceded by accumulation
of 3'-underprocessed 5.8S rRNA species (Figure 2G).
This molecular phenotype is indicative of exosome mal-
function (Mitchell et al., 1997) and was never observed in
WT plants exposed to estradiol (neither is growth inhibi-
tion). These results show that Arabidopsis RRP4 and
RRP41 are essential for postembryonic growth and vali-
date the conditional iRNAi knockdown system as a useful
approach for investigating their functions in vivo.

To comprehensively identify exosome targets in Arabi-
dopsis and gain additional insights into the apparent
subfunctionalization of its core subunits, we implemented
iRNAI in conjunction with whole-genome tiling microar-
rays. To minimize changes in gene expression that did
not result directly from exosome depletion, we selected
the earliest time point of estradiol treatment correspond-
ing to the accumulation of underprocessed 5.8S rRNA
species, but before growth retardation. Oligo(dT)-primed
targets prepared from RNA samples from plants contain-
ing empty vector, rrp4 N or rrp41FNA constructs grown
with or without estradiol were used to interrogate oligonu-
cleotide tiling arrays. Therefore, the array signals should
correspond exclusively to polyadenylated RNA species.
Moreover, to rule out the possibility of spurious internal
priming events, we employed 3'-rapid amplification of
cDNA ends (3'-RACE) to map the polyadenylation sites
in a subset of targets (Figure S9) as well as compared
the relative change in expression between poly(A)" and
total RNA fractions for selected targets (Figures 3C,
S5B, S5C, S5H, and S8).

We used the TileMap algorithm, which utilizes a two-state
hidden Markov model based on probe-level t statistics (Ji
and Wong, 2005), to identify genomic regions showing sta-
tistically significant changes. Expression data from arrays
hybridized with targets from rmp4™™4 and rrp417N4 plants
that had been estradiol-treated were compared against
the corresponding mock (DMSO)-treated samples, as well
as against the empty-vector line treated with estradiol.
We identified a total of 1612 genomic regions exhibiting
increased levels of polyadenylated RNA upon the depletion
of RRP4 (rrp4™™A) and RRP41 (rp41™), while only about
1/10 as many regions showed downregulation (Figures 2H
and 2I; Tables S2 and S3). Depleting an exoribonucleolytic
complex should cause increased accumulation of its target
RNAs, thus the overwhelming majority of expression
changes in RRP4- and RRP41-depleted seedlings most
likely represent direct effects.

In contrast, when we conducted a similar analysis of cs/4-
2 mutant versus wild-type (Ws) plants, upregulation was no
longer a predominant trend (Figure S2). Thus, the constitu-
tive absence of CSL4 likely results in many secondary
effects. This observation raises a general concern applica-
ble to transcriptome studies using constitutive loss-of-func-
tion mutants and, conversely, emphasizes the value of con-
ditional alleles like 4™ and rrp4 17N, At the same time,
it is notable that the overlap in the upregulated RNA targets

among the cs/4-2, rrp4™M and rp41 M samples is highly
significant, while the overlap in spectra of downregulated
RNAs is negligible (Figure S2). Hence, the majority of upre-
gulated RNA targets in cs/4-2 seedlings constitute a direct
molecular signature of the CSL4-less exosome. Remark-
ably, many of the exosome targets upregulated in o4
and rrp4 17N samples were unaffected in the cs/4-2 seed-
lings, including both nuclear-confined species (e.g., miRNA
precursors, Figure 5) as well as cytoplasmic RNAs (e.g.,
spliced mRNAs, Figure 4). Therefore, the CSL4-less exo-
some is fully active on some of the exosome substrates in
both cellular compartments. In addition, these data repre-
sent a valuable resource for narrowing down which of the
exosome targets are essential for viability, via subtracting
the cs/4-2 upregulated dataset from the rp4"™NA" and
41 N analyses. For example, the 7S pre-rRNA process-
ing defect in the cs/4-2 seedlings was as severe as in the
RRP4- and RRP41-depleted seedlings (Figure 2G), and
yet csl4-2 mutant plants are phenotypically indistinguish-
able from WT. A global comparative overview of similarities
and differences in the expression changes among the cs/4-
2, mp4™N4Y and rp41FN4 lines can be found in Figure S2
and Tables S2-S11 and on the accompanying website
(http://signal.salk.edu/cgi-bin/exosome).

The following major classes of Arabidopsis exosome
direct targets were defined by tiling microarray analysis of
4T VA and  rmp41"NA plants: (1) small nuclear RNAs
(snRNAs; 9 snRNA genes from both rrp4 N4 and rrp41FNAL:
Table S4); (2) the majority of small nucleolar RNAs
(snoRNAs) encoded in the genome (83 and 96 snoRNA
genes from rrp4TNA and rrp41FN4 samples, respectively;
Table S5); (3) a select subset of tRNA genes (20 and 14,
respectively; Table S6); (4) an upregulated subset of Arabi-
dopsis mRNAs (205 and 266 mRNAs, respectively; Table
S7); (5) a subset of MRNAs that extend beyond their anno-
tated 3’ end, indicative of 3'-processing defects (29 from
both rmp4™NY and rrp41FNA: Table S8); (6) a subset of
specific pri-miRNA genes (12 from rrp4™™ and 11 from
41PN Table S9); (7) a large class of previously unchar-
acterized noncoding RNAs (ncRNAs); many of these
ncRNAs overlap with repetitive elements and small RNA
(smRNA)-generating loci (210 and 156 ncRNAs, respec-
tively; Table S10); and (8) a distinct class of previously
undetected polyadenylated transcripts that map exclu-
sively to the 5’ ends of known protein-coding mRNAs and
hence may possess regulatory potential (52 from both
o4 NA and rrp41FNA: Table S11). Notably, while the over-
lap in the spectra of upregulated target RNAs revealed by
the depletions of RRP4 and RRP41 was highly significant
(~64%), the extent of differences between them corrobo-
rates the notion of subfunctionalization of the subunits in
the Arabidopsis exosome core (for example see Figure 4).
Taken together, these results circumscribe a complex
spectrum of Arabidopsis exosome targets that spans
RNAP 1, 11, 11, and possibly RNAP IV transcripts and includes
nuclear-restricted RNAs (e.g., pri-miRNAs), cytoplasmic
RNAs (e.g., spliced mRNAs), as well as RNAs distributed
between the two compartments.
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Figure 3. Effect of Arabidopsis Exosome
Subunits Depletion or Mutation on rRNA
Processing

(A) Effects on the sense (Watson strand) and
antisense (Crick strand) rRNA-related species.
Vertical bars correspond to the array probes.
Boxes delimit the boundaries of the regions
exhibiting prominent up- (orange and yellow)
and down-changes (purple) of antisense
rRNA-related transcripts.

(B) RT gPCR validation of upregulation of the
IGS transcript (blue arrow in A; error bars,
+SD).

(C) Northern analysis of poly(A)* (top) and
total RNA (bottom) using the same probe as
in Figure 2G reveals the accumulation of
~2.4 kb polyadenylated rRNA precursor.
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Interestingly, our array analyses identified appreciable
amounts of polyadenylated RNA signals across the
rDNA repeat unit even under normal conditions, which
were dramatically upregulated upon depletion of RRP4
or RRP41 (Figure 3). This increased and expanded signal
corresponded largely to polyadenylated pre-rRNA precur-
sors. For example, northern analysis targeting the
sequences just downstream of 5.8S rRNA revealed an

rrp4 1Rl

4 estradiol

increase in a polyadenylated, 3'-underprocessed species
of ~2.4 kb (Figure 3C, top) that included both the 18S and
5.8S mature rRNA regions, while neither the nonpolyade-
nylated precursor (Figure 3C, bottom) nor the levels of ma-
ture rBNAs (data not shown) were affected. Furthermore,
two major clusters of polyadenylation sites identified by
3’-RACE were both located outside of the boundaries of
the mature rRNA (Figure S9). These findings parallel ob-
servations in yeast, where targeting of pre-rRNA species
for degradation by the exosome is mechanistically linked
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Figure 4. Effects of Arabidopsis Exosome Depletion on a Select Subset of mRNA
(A and B) RRP4 depletion-specific upregulation of the glycosyltransferase At5g54060 mRNA, visualized by tiling microarray hybridization (A) and RT

qPCR (B). Error bars, +SD.

(C and D) RRP41 depletion-specific upregulation of the B-galactosidase At5g56870 mRNA, visualized by tiling microarray hybridization (C) and RT

qPCR (D). Error bars, +SD.

(E and F) 3’-extension of the At5g717090 mRNA upon the depletion of either RRP4 or RRP41 exosome subunits, visualized by tiling microarray hybrid-

ization (E) and RT gPCR (F). Error bars, +SD.

to their oligoadenylation by the TRAMP complex (Kadaba
et al., 2004; Vanacova et al., 2005).

In addition, both tiling array and qPCR analyses re-
vealed increased accumulation of poly(A)* RNAs in the
intergenic spacer region (IGS, Figures 3A and 3B). Nota-
bly, in mouse cells the IGS-derived RNA regulates the
activity of the main rDNA promoter in an epigenetically
stable manner (Mayer et al., 2006). Interestingly, depletion
of RRP4 and RRP41 also impacted the abundance of pol-
yadenylated RNAs of antisense polarity relative to rRNAs.
For example, we observed a strong increase in transcripts
complementary to the external transcribed spacer and to
the 5’ half of 25S rRNA. Conversely, exosome depletion
led to the significant decrease of a naturally occurring
antisense RNA whose boundaries closely correspond to
that of 18S rRNA. Notably, this polyadenylated antisense
RNA is immediately flanked by polyadenylated sense
RNA, suggestive of a mutually exclusive relationship.

Moreover, in csl4-2 seedlings, where the upregulation of
the sense poly(A)* RNA in the 18S region does not occur,
this antisense species is not downregulated (Figure 3A).
Therefore, these findings may be indicative that rRNA
C-related species are regulated by complementary anti-
sense transcripts.

Tiling array data also revealed that depletion of RRP4
and RRP41 resulted in dramatic increases in accumulation
of poly(A)* snRNAs (Table S4) and snoRNAs (Table S5), in-
cluding those encoded by free-standing polycistronic
clusters (Figures S5A-S5C), solitary genes (Figure S8A),
as well as those embedded in introns of genes functionally
related to protein synthesis (Table S5). The latter gene ar-
rangement may help to coordinate snoRNA biogenesis
with cellular demands on translation and is prevalent in an-
imals, but it has been observed in Arabidopsis only once
(Barneche et al., 2000). Moreover, we identified 3'-ex-
tended upregulated poly(A)* snoRNAs (Figures S5A and
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S5B), which may represent either incompletely processed
byproducts of snoRNA biogenesis targeted for degrada-
tion or normal processing intermediates.

Several classes of Arabidopsis small stable RNAs con-
stitute previously unknown exosome substrates. One
example is the RNAP llI-transcribed MRP/7-2 RNA (Fig-
ures S4E and S4F), which in yeast is processed by
Rex3, not the exosome (van Hoof et al., 2000). Second,
we observed accumulation of a poly(A)* form, as well as
of the 3’-extended species of 7SL RNA, also an RNAP I
transcript (Figures S5G-S5I and S9). Hence, the Arabi-
dopsis exosome may degrade the poly(A)* 7SL RNA
during RNA quality control and/or process 3'-readthrough
species into mature 7SL RNA. Notably, the scattered dis-
tribution of polyadenylation sites throughout the RNA
body in MRP, 7SL, U12, and U3B RNAs (Figure S9) is con-
sistent with repeated cycles of oligoadenylation by
TRAMP and exosomal “nibbling” (LaCava et al., 2005;
Vanacova et al., 2005; Wyers et al., 2005). Third, we
observed strong accumulation of a poly(A)* tRNA™" (Fig-
ure S5D; Table S6), which is different from the tRNA
species downregulated by the exosome and TRAMP in
yeast (Kadaba et al., 2004). Biogenesis of plant tRNA™" re-
quires highly ordered events of Uzs — i35 modification
and splicing (Akama et al., 1997), hence this observation
likely reflects the role of the exosome in proofreading of
this complex process. Taken together, our observations
of massive accumulation in exosome-depleted seedlings
of poly(A)* forms of many stable RNAs strongly suggest
that oligoadenylation coupled to exosome-mediated
RNA quality control and/or processing are fundamental
features of plant gene expression.

Messenger RNAs

The exosome degrades poly(A)~ intermediates of mRNA
decay produced by deadenylating enzymes. Poly(A)~
species cannot be detected in microarray experiments
using oligo(dT)-primed targets. Nevertheless, a number
of upregulated signals detected in the exosome-depleted
Arabidopsis seedlings were protein-coding mMRNAs
(Table S7). Notably, transcripts from intronless genes
were highly overrepresented in this category (p <
0.001), suggesting a significant enrichment for processed
pseudogenes. Moreover, a surprising proportion of the
upregulated regions were of antisense polarity (23.3%
for rmp41FNA and 24.4% for rrp4™™N4). These findings
suggest that sense and antisense poly(A)* transcripts
derived from potential pseudogenes in Arabidopsis are
specifically and directly targeted for exosome-mediated
3'-5' decay.

Interestingly, a number of MRNAs targeted by the Arabi-
dopsis exosome exhibit subunit-specific responses (Table
S7). For example, the level of a putative glycosyltransfer-
ase mMRNA (At5g54060) is increased upon the depletion
of RRP4 but not of RRP41, while the opposite is true for
a putative B-galactosidase mRNA (At5g56870; Figures
4A-4D). While the mechanistic basis of differential sensi-
tivity to the depletion of RRP4 or RRP41 remains to be
determined, these examples parallel their distinct mutant

phenotypes and corroborate the notion of subfunctionali-
zation of the Arabidopsis exosome core subunits.
Unexpectedly, tiling array experiments also revealed
a number of mRNAs with extended 3 ends but whose
absolute levels were unaffected (Table S8; Figures 4E
and 4F). This may be indicative of Arabidopsis exosome-
mediated degradation of aberrant readthrough mRNAs
although we cannot rule out the alternative possibility
that the exosome participates in 3’ end formation of
some mRNAs.
Intermediates of microRNA Biogenesis
Depletion of RRP4 and RRP41 also revealed significant
increases in pri-miRNA transcripts (Table S9; Figure 5). In-
terestingly, the increased signal was mostly located up-
stream of the stem-loop structure that harbors the
miRNA/mMIiRNA* duplex, while the downstream segments
were usually unaffected (Figure 5A), and the levels of
mature miRNAs were also unchanged (Figure 5C). In addi-
tion, our analyses revealed novel polyadenylated interme-
diates corresponding to the region between the miRNA
and miRNA* (Figures 5D, S6B, and S9). Together, these
findings delineate a 3'-5' pathway of removal of upstream
and middle (loop) byproducts involving TRAMP-like and
exosome activities (Figure S6A). Although these exo-
some-dependent reactions do not appear rate limiting
for biogenesis of mature miRNAs, they likely facilitate
efficient recycling of the pre-miRNA processing factors.
Surprisingly, our 3'-RACE analyses of the upregulated sig-
nal in the pri-miRNA168a transcript demonstrated that in
the majority of cases (72%) polyadenylation occurred
immediately upstream of the mature miRNA sequence
(Figures 5B and S6C), indicating that pri-miRNA168a is of-
ten cleaved directly at the precursor/miRNA boundary.
These findings are inconsistent with the proposed two-
step pathway of plant miRNA biogenesis via an initial
processing of pri-miRNA into pre-miRNA, followed by pro-
cessing of pre-miRNA into mature miRNA (Kurihara and
Watanabe, 2004), and suggest the existence of possible
alternative pathways.
Heterochromatic Repeat-Associated and Novel
Noncoding RNAs
Additionally, tiling microarray experiments revealed the
accumulation of numerous poly(A)* transcripts that have
neither protein-coding potential nor predicted functions.
Significantly, a large fraction of these RNA species es-
caped detection in previous transcriptome analyses
(Meyers et al., 2004; Yamada et al., 2003), apparently be-
cause their steady-state levels in WT plants are tightly
downregulated via exosome-mediated degradation
(Table S10). Notably, there was a highly significant overlap
among these RNAs in rrp4™™M rp41FNAT and csl4-2
samples (Figure S2C). Remarkably, these novel exosome-
specific RNAs exhibit a strikingly nonrandom association
with small RNA-producing loci, as well as with repeated
sequences: 72% from rrp4™N4 and 63% from rrp41F N
(p < 0.001; Figures 6A and 6B). Furthermore, we often
observed the accumulation of complementary RNAs of
both polarities (Figures 6C and 6E). Another characteristic
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Figure 5. Effects of Exosome Subunit Depletion on pri-miRNA Processing Intermediates

(A) Tiling microarray data demonstrating upregulated poly(A)* RNA for the pri-miR168a gene upstream of the mature miRNA sequence.
(B) 3'-RACE of pri-miRNA168a; distribution of 3’-endpoints of the sequenced 3’'-RACE products are shown in the bottom panel.

(C) Northern blot analysis demonstrates that mature miRNA levels are not affected by exosome depletion.

(D) Oligo(dT)-primed RT gPCR targeting the loop region of pre-miR156e. Error bars, +SD.

example concerns an exosome-specific sense/antisense
transcript pair emanating from a repetitive sequence ele-
ment containing 42 bp interspersed tandem subrepeats
(Figure 6G). Such sense/antisense transcript pairs serve
as precursors for the ~24 nt endogenous heterochromatic
small-interfering RNAs (siRNAs) that guide RNA-depen-
dent DNA methylation (RdADM) and H3K9 methylation of
transposon and tandem repeat loci (Cao et al., 2003;
Lippman and Martienssen, 2004; Xie et al., 2004; Zilber-
man et al., 2004). Therefore, we confirmed the increased
expression of the 5S rDNA region that gives rise to
siRNA1003 in RRP4- and RRP41-depleted seedlings, as
well as cs/4-2 mutant plants (mature 5S rRNA levels
were unaffected; Figures 6C and 6D). Notably, the novel
exosome-specific NcRNAs are preferentially associated
with centromeric and pericentromeric regions of the Ara-
bidopsis genome highly coincident with repetitive ele-
ments and DNA methylation (Zhang et al., 2006), while
exosome-regulated mRNAs are excluded from these
regions (Figure 6H). Hence, the Arabidopsis exosome
may have a general role in quality control of RADM-asso-
ciated siRNA biogenesis precursors and/or degrade

heterochromatin-associated RNAs, as shown for hetero-
chromatic silencing of select loci in S. pombe (Buhler
et al., 2007). Overall, these data suggest that the Arabi-
dopsis exosome plays an important role in regulating
heterochromatin-associated transcripts.

Another remarkable example of a novel ncRNA upregu-
lated upon exosome knockdown was an ~4 kb long tran-
script lacking significant protein-coding capacity but
conserved in closely related dicots (e.g., Capsella rubella,
Figures 7A-7C). Curiously, sequence conservation be-
tween the Arabidopsis and Capsella transcripts is con-
fined to two interspersed short direct repeats 16 nt and
24 nt in length (Figures 7B and S7), suggesting that these
small conserved segments constitute its functionally
important elements. For example, they might serve as
recognition sites for RNA-binding proteins or be pro-
cessed out to form small RNAs. These repeated segments
do not reside in secondary structures resembling DICER
substrates, thus their processing would likely have a dis-
tinct mechanistic basis.

Perhaps the most intriguing category of exosome tar-
gets was a distinct subclass of ncRNAs colinear with the
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Figure 6. Effects of Exosome Subunit Depletion or Mutation on Novel Transcripts Associated with siRNAs and Repetitive Elements
(A and B) Venn diagram representation of upregulated, exosome-specific transcripts and their highly significant association with smRNA-generating
loci and repetitive elements. As shown in the Venn diagrams, the majority of transcripts that are only observed upon exosome depletion are asso-
ciated with smRNA-generating loci and/or repetitive elements (72% for rrp4" ™M and 63% for rrp4177M |ines).

(C-F) Upregulation of transcripts encoded on both strands of tandem repeats. (C and D) Polyadenylated 5S transcripts: (C) tiling microarray data, (D)
RT gPCR results. Note the 500 bp periodicity in the tandem repeat signals in (C). (E and F) Polyadenylated transcripts from the MEA-ISR repeats (red
boxes). Error bars, +SD.

(G) An example of an upregulated, exosome-specific transcript (screenshot from the exosome-regulated transcriptome database, http://signal.salk.
edu/cgi-bin/exosome). W and C indicate signal from Watson and Crick strands of the Arabidopsis genome. Repetitive element is denoted by purple
bar, with its constituent 42 bp tandem repeats indicated by the dark gray boxes.

(H) Chromosomal distribution of novel upregulated, exosome-specific transcripts. Top panels demonstrate the total length of novel upregulated, exo-
some-specific transcripts (y axis, left-side scale) in a sliding 100 kb window in rrp4 N4 (green line) and rrp4 17N (red line) treated with estradiol. Mid-
dle panels show the total length of annotated mRNAs upregulated upon estradiol treatment of rrp4™N4' (purple line) and rrp4 17N (blue line) plants.
Bottom panels demonstrate the total lengths of all repeats (light blue line) and tandem repeats (yellow line) in a sliding 100 kb window.

5 ends of known protein-coding transcripts (Table S11
and Figures 7D and 7E). We propose that the origin of
these ncRNAs (hereafter called upstream noncoding tran-
scripts, or UNTs) is distinct from that of the overlapping
“main” RNAP Il transcription units. First, they are unlikely
to be derived from cytoplasmic mRNA degradation be-
cause the exosome enters the decay pathway after
mRNA deadenylation and degrades the mRNA body proc-
essively in a 3'-5' direction. Hence, exosome depletion

Cell 131, 1340-1353, December 28, 2007 ©2007 Elsevier Inc.

would cause an accumulation of deadenylated, full-length
transcripts and/or heterogeneous populations of 3'-trun-
cated poly(A)~ fragments with endpoints scattered
throughout the mRNA body (Anderson and Parker,
1998). In contrast, the UNTs are collinear only with the 5’
ends of known mRNAs (Figure S9). Also, UNTs frequently
extend into the first intron of respective overlapping
genes. The possibility that UNTs derive from the pre-
mRNAs is highly improbable, particularly when the UNT
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Figure 7. Examples of Novel Noncoding RNAs Revealed by Tiling Microarray Analyses of Arabidopsis Exosome Depletion

(A-C) Upregulation of a ~4 kb long transcript containing internal short interspersed repeats conserved in Capsella rubella. (A) Tiling microarray data.
(B) Schematic of the transcript and a dotplot of the Arabidopsis/Capsella alignment, with the two classes of interspersed internal repeats color-coded
in blue and red. (C) Results of the RT qPCR. Error bars, +SD.

(D and E) Example of the strongly upregulated upstream noncoding transcript (UNT) in the 5’ region of At7g20100 in the exosome subunit-depleted
seedlings. (D) Tiling microarray data. (E) Northern blot analysis of poly(A)* RNA.

(F) Results of the RT gPCR. Error bars, +SD.

is more abundant than the corresponding mRNA (Figures of UNTs are reminiscent of cryptic unstable transcripts
7D and 7E). (CUTs) in yeast, which are present at very low levels in

The striking association of Arabidopsis UNTs with the 5’ WT cells (Wyers et al., 2005). CUTs are frequently associ-
ends of RNAP Il transcription units must reflect some ated with promoters of protein-coding genes, and while
aspect of their biogenesis or function. Several features some may merely reflect transcriptional noise, others
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may also have biological functions (Davis and Ares, 2006;
Kopcewicz et al., 2007). Moreover, recent detailed map-
ping of the human transcriptome also revealed an abun-
dant class of promoter-associated short (up to 200 nt)
ncRNAs, termed PASRs (Kapranov et al., 2007), which
also may act as negative regulators of the main transcrip-
tion units (Martianov et al., 2007). Although UNTs may dif-
fer from both CUTs and PASRs because their 5’ ends
appear to coincide with those of the main RNAP Il tran-
scripts (Figures 7D and S9), our results suggest that the
exosome-regulated ncRNAs associated with 5’ ends of
genes likely represent a fundamental regulatory feature
of eukaryotic transcriptomes.

Conclusion

We combined genetic, proteomic, and whole-transcrip-
tome analyses to investigate the function of the exosome
complex in the multicellular eukaryote Arabidopsis thaliana.
We find that individual subunits of the plant exosome are
functionally specialized, ranging from being dispensable
for growth and development (CSL4) to being essential for
the development of female gametophytes (RRP41) or em-
bryogenesis (RRP4). Moreover, the plant exosome
complex lacking its CSL4 subunit is partially intact and
functional. These findings demonstrate an unexpected
degree of functional plasticity in the plant exosome core.
Our whole-genome tiling array analyses revealed numerous
novel exosome substrates, new metabolic aspects of sev-
eral known important RNA species, a broad role of the
exosome in regulation of ncRNAs associated with hetero-
chromatic regions, as well as the widespread occurrence
of polyadenylation- and exosome-mediated RNA quality
control in plants. Furthermore, our findings reveal a “deeply
hidden” layer of the transcriptome composed of intergenic
noncoding transcripts that are tightly downregulated by
constitutive exosome activity. Finally, a publicly available
exosome-regulated transcriptome database (http://signal.
salk.edu/cgi-bin/exosome) should aid in illuminating new
fundamental components and regulatory mechanisms in
complex eukaryotic transcriptomes.

EXPERIMENTAL PROCEDURES

Plant Material and Reverse Genetics

Mutant alleles cs/4-1 and csl4-2 correspond to SALK_004561 (Alonso
et al., 2003) and FLAG_055B05 lines, respectively. The rrp4-1 allele
is SALK_025995, rrp41-2 and rrp41-3 are SALK_139189 and
SALK_112819, respectively, while rrp41-1 was isolated from the Uni-
versity of Wisconsin BASTA population. WT plants of matching acces-
sions were used in all reciprocal crosses (Col-0 for all Salk alleles and
Ws for FLAG and University of Wisconsin alleles). For complementa-
tion with the WT and TAP tagged transgenes, respective heterozy-
gotes were transformed (Clough and Bent, 1998) and the progeny
plants lacking the WT allele and containing both the T-DNA insertion
allele and the transgene identified by PCR.

Proteomics

TAP purification protocol was adapted from Rigaut et al. (1999). The
Coomassie-stained protein bands were treated with trypsin using an
In-Gel Digestion kit (Pierce), and dried peptides dissolved in 50%

acetonitrile, 0.1% trifluoroacetic acid with 5 mg/ml alpha 4-hydroxy-
cinnamic acid as a matrix. 0.6 ul of peptide/matrix mix was loaded
onto the 6AB MALDI sample plate, dried, and subjected to MALDI-
TOF MS and subsequent MS/MS analyses using the 4700 Proteomics
Analyzer and GPS software (Applied BioSystems). A combination of
peptide mass fingerprinting (PMF) and MS/MS sequencing analysis
was performed using the Mascot search engine. Fragmentation of
the precursors was carried out using the collision-induced dissociation
(CID). CID spectra were submitted for protein identifications with a pre-
cursor precision tolerance of 1 Da and MS/MS fragment tolerance of
0.5 Da. A criterion of correct protein identification was a confidence in-
terval exceeding 95%, which was a combination of protein scores from
PMF and ion scores from MS/MS sequencing.

Inducible RNAi

RNAi cassettes contained 940 bp (RRP4) or 788 bp (RRP41) fragments
of the target cDNA sequence as a pair of inverted repeats, separated
by the FAD2 intron in the pER8 vector backbone (Zuo et al., 2000). For
iRNAI, seedlings were germinated and grown for <7 days on 8 uM of
17B-estradiol.

RNA Analyses

Polyacrylamide Northern blot analyses were performed as described
(Chekanova et al., 2000). Transcripts were quantified by RT qPCR
using the comparative threshold cycle method (AAC;, primers listed
in Table S16), using Actin 3 (At3g53750) as endogenous reference.

RNA Extraction, Probe Synthesis, Microarray Hybridization,
and Analysis

Fifteen micrograms of total RNA extracted using TRIzol (Invitrogen)
was used to synthesize double-stranded cDNA using the GeneChip
One-Cycle cDNA Synthesis Kit (Affymetrix). Biotin-labeled cRNA was
generated using the GeneChip IVT Labeling Kit and fragmented, and
15 pg of cRNA was hybridized to Arabidopsis tiling arrays (Zhang
et al., 2006). Hybridization, staining, and washing were performed
according to the Affymetrix Eukaryotic Target Protocol. A minimum
of two biological replicates were performed for each of the three geno-
types, the empty vector (referred to as WT for brevity), rmp4 7N and
rp4 1N using estradiol or control (DMSO) treatment. The TileMap
tiling array analysis software package (Ji and Wong, 2005) was used
to detect statistically significant differences in transcriptional activity
in the tiling microarray data as described in Zhang et al. (2006) and
further detailed in the Supplemental Data.

Supplemental Data

Supplemental Data include Experimental Procedures, nine figures,
and eighteen tables and can be found with this article online at
http://www.cell.com/cgi/content/full/131/7/1340/DC1/.
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